->

Mathematics & Statistics for Machine Learning

Mathematics & Statistics for Machine Learning
MP4 | h264, 1280x720 | Lang: English | Audio: aac, 44100 Hz | 1h 31m | 448 MB
Learn these concepts First before learning Machine Learning


What you'll learn

You will understand the fundamentals of mathematics and statistics relevant for machine learning

You will gain insights on the application of math and stats on machine learning

You will know what problems Machine Learning can solve, and how the Machine Learning Process works

You will learn Measures of Central Tendency vs Dispersion

You will understand Mean vs Standard Deviation & Percentiles

You will have clarity on the Types of Data & Dependent vs independent variables

You will be knowledgeable on Probability & Sample Vs population

You will gain clarity on Hypothesis testing

You will learn the Types of distribution & Outliers

You will understand the maths behind algorithms like regression, decision tree and kNN

You will gain insights on optimization and gradient descent

Requirements

No prior experience is required. We will start from the very basics.

Description

The trainer of this course is an AI expert and he has observed that many students and young professionals make the mistake of learning machine learning without understanding the core concepts in maths and statistics. This course will help to address that gap in a big way.

 

Since Machine Learning is a field at the intersection of multiple disciplines like statistics, probability, computer science, and mathematics, its essential for practitioners and budding enthusiasts to assimilate these core concepts.

 

These concepts will help you to lay a strong foundation to build a thriving career in artificial intelligence.

 

This course teaches you the concepts mathematics and statistics but from an application perspective. It’s one thing to know about the concepts but it is another matter to understand the application of those concepts. Without this understanding, deploying and utilizing machine learning will always remain challenging.

 

You will learn concepts like measures of central tendency vs dispersion, hypothesis testing, population vs sample, outliers and many interesting concepts. You will also gain insights into gradient decent and mathematics behind many algorithms.

 

We cover the below concepts in this course:

 

Measures of Central Tendency vs Dispersion

 

Mean vs Standard Deviation

 

Percentiles

 

Types of Data

 

Dependent vs independent variables

 

Probability

 

Sample Vs population

 

Hypothesis testing

 

Concept of stability

 

Types of distribution

 

Outliers

 

Maths behind machine learning algorithms like regression, decision tree and kNN

 

Gradient descent.

 

Who this course is for:

Data Scientists, Python Programmers, ML Practitioners, IT Managers managing data science projects

 

 

 

 

 

 

 

 

Mathematics & Statistics for Machine Learning


 TO MAC USERS: If RAR password doesn't work, use this archive program: 

RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


 TO WIN USERS: If RAR password doesn't work, use this archive program: 

Latest Winrar  and extract password protected files without error.


 nomaher   |  

Information
Members of Guests cannot leave comments.




rss