->

 

Introduction to Deep Learning with OpenCV
Lynda - Introduction to Deep Learning with OpenCV
Deep learning is a fairly recent and hugely popular branch of artificial intelligence (AI) that finds patterns and insights in data, including images and video. Its layering and abstraction give deep learning models almost human-like abilities—including advanced image recognition. Using OpenCV—a widely adopted computer vision software—you can run previously trained deep learning models on inexpensive hardware and generate powerful insights from digital images and video. In this course, instructor Jonathan Fernandes introduces you to the world of deep learning via inference, using the OpenCV Deep Neural Networks (dnn) module. You can get an overview of deep learning concepts and architecture, and then discover how to view and load images and videos using OpenCV and Python. Jonathan also shows how to provide classification for both images and videos, use blobs (the equivalent of tensors in other frameworks), and leverage YOLOv3 for custom object detection.

 


  • Introduction
  • 1. Deep Learning with OpenCV
  • 2. Image and Videos in OpenCV
  • 3. Working with the Deep Neural Networks (dnn) Module
  • 4. Working with Deep Learning Models
  • Conclusion


 TO MAC USERS: If RAR password doesn't work, use this archive program: 

RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


 TO WIN USERS: If RAR password doesn't work, use this archive program: 

Latest Winrar  and extract password protected files without error.


 Themelli   |  

Information
Members of Guests cannot leave comments.




rss