->

Learning Neural Networks with Tensorflow


Learning Neural Networks with Tensorflow
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 3.5 Hours | 634 MB
Genre: eLearning | Language: English


Neural Networks are used all around us: they index photos into categories, translate text, suggest replies for emails, and beat the best games. Many people are eager to apply this knowledge to their own data, but many fail to achieve the results they expect.

In this course, we’ll start by building a simple flower recognition program, making you feel comfortable with Tensorflow, and it will teach you several important concepts in Neural Networks. Next, you’ll start working with high-dimensional uses to predict one output: 1275 molecular features you can use to predict the atomization energy of an atom. The next program we’ll create is a handwritten number recognition system trained on the famous MNIST dataset. We’ll work our way up from a simple multilayer perceptron to a state of the art Deep Convolutional Neural Network.

In the final program, estimate what a celebrity looks like, checking for new pictures to see whether a celebrity is attractive, wears a hat, has lipstick on, and many more properties that are difficult to estimate with "traditional" computer vision techniques.

After the course, you’ll not only be able to build a Neural Network for your own dataset, you’ll also be able to reason which techniques will improve your Neural Network.

 

Learning Neural Networks with Tensorflow
Learning_Neural_Networks_with_Tensorflow__Video_.part1.rar - 200.0 MB
Learning_Neural_Networks_with_Tensorflow__Video_.part2.rar - 200.0 MB
Learning_Neural_Networks_with_Tensorflow__Video_.part3.rar - 200.0 MB
Learning_Neural_Networks_with_Tensorflow__Video_.part4.rar - 35.0 MB


 TO MAC USERS: If RAR password doesn't work, use this archive program: 

RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


 TO WIN USERS: If RAR password doesn't work, use this archive program: 

Latest Winrar  and extract password protected files without error.


 nagy   |  

Information
Members of Guests cannot leave comments.




rss