English | October 31, 2018 | ASIN: B078N8RDCP | 368 pages | AZW3 | 18 MB
A comprehensive guide to advanced deep learning techniques, including Autoencoders, GANs, VAEs, and Deep Reinforcement Learning, that drive today's most impressive AI results Key FeaturesExplore the most advanced deep learning techniques that drive modern AI resultsImplement Deep Neural Networks, Autoencoders, GANs, VAEs, and Deep Reinforcement LearningA wide study of GANs, including Improved GANs, Cross-Domain GANs and Disentangled Representation GANsBook Description Recent developments in deep learning, including GANs, Variational Autoencoders, and Deep Reinforcement Learning, are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. Youll learn how to implement deep learning models with Keras and Tensorflow, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create Autoencoders. You then learn all about Generative Adversarial Networks (GANs), and how they can open new levels of AI performance. Variational AutoEncoders (VAEs) are implemented, and youll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement Deep Reinforcement Learning (DRL) such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI. What you will learnCutting-edge techniques in human-like AI performanceImplement advanced deep learning models using KerasThe building blocks for advanced techniques - MLPs, CNNs, and RNNsDeep neural networks ResNet and DenseNetAutoencoders and Variational AutoEncoders (VAEs)Generative Adversarial Networks (GANs) and creative AI techniquesDisentangled Representation GANs, and Cross-Domain GANsDeep Reinforcement Learning (DRL) methods and implementationProduce industry-standard applications using OpenAI gymDeep Q-Learning and Policy Gradient MethodsWho this book is for Some fluency with Python is assumed. As an advanced book, you'll be familiar with some machine learning approaches, and some practical experience with DL will be helpful. Knowledge of Keras or TensorFlow is not required but would be helpful. Table of ContentsIntroducing Advanced Deep Learning with KerasDeep Neural NetworksAutoencodersGenerative Adversarial Network (GANs)Improved GANsDisentangled Representation GANsCross-Domain GANsVariational Autoencoders (VAEs)Deep Reinforcement LearningPolicy Gradient Methods</ol>
TO MAC USERS: If RAR password doesn't work, use this archive program:
RAR Expander 0.8.5 Beta 4 and extract password protected files without error.
TO WIN USERS: If RAR password doesn't work, use this archive program:
Latest Winrar and extract password protected files without error.