->

Proportionate-type Normalized Least Mean Square Algorithms

Proportionate-type Normalized Least Mean Square Algorithms by Kevin Wagner and Milos Doroslovacki
English | ISBN: 1848214707 | 2013 | 192 pages | PDF | 14,6 MB
The topic of this book is proportionate–type normalized least mean squares (PtNLMS) adaptive filtering algorithms, which attempt to estimate an unknown impulse response by adaptively giving gains proportionate to an estimate of the impulse response and the current measured error. 
These algorithms offer low computational complexity and fast convergence times for sparse impulse responses in network and acoustic echo cancellation applications. New PtNLMS algorithms are developed by choosing gains that optimize user–defined criteria, such as mean square error, at all times. PtNLMS algorithms are extended from real–valued signals to complex–valued signals. The computational complexity of the presented algorithms is examined. Contents 1. Introduction to PtNLMS Algorithms 2. LMS Analysis Techniques 3. PtNLMS Analysis Techniques 4. Algorithms Designed Based on Minimization of User Defined Criteria 5. Probability Density of WD for PtLMS Algorithms 6. Adaptive Step–size PtNLMS Algorithms 7. Complex PtNLMS Algorithms 8. Computational Complexity for PtNLMS Algorithms



 TO MAC USERS: If RAR password doesn't work, use this archive program: 

RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


 TO WIN USERS: If RAR password doesn't work, use this archive program: 

Latest Winrar  and extract password protected files without error.


 mahmoudahmed920   |  

Information
Members of Guests cannot leave comments.




rss