This book addresses the following big data characteristics:
Very large, distributed aggregations of loosely structured data – often incomplete and inaccessible
Petabytes/Exabytes of data
Millions/billions of people providing/contributing to the context behind the data
Flat schema's with few complex interrelationships
Involves time-stamped events
Made up of incomplete data
Includes connections between data elements that must be probabilistically inferred
Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability.
Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible.
This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.
What you’ll learn
Understanding the technology, implementation of big data platforms and their usage for analytics
Big data architectures
Big data design patterns
Implementation best practices
Download
For Free Users : Direct And Support Resumable
Premium Recomended