->
TheGreatCoursesPlus - Chemistry, 2nd Edition
TheGreatCoursesPlus - Chemistry, 2nd Edition
Give your student a head start on chemistry with this course by an award-winning educator.


1: Introduction and Philosophy

  • In this first lecture, Professor Cardulla explains how any student can find success in chemistry by cultivating a meaningful understanding of the concepts and quantitative thinking operations that underlie this often challenging area of study.

2: Basic Concepts of Quantitative Reasoning

  • Introductory chemistry is not mysterious: It requires simple quantitative reasoning that comes naturally to most students. You learn about the types of numbers involved in chemistry and how to solve problems commonly encountered in high school chemistry.

3: Quantitative Reasoning in Everyday Life

  • Only a handful of important ideas must be mastered in order to be successful at solving chemistry problems. In this lecture, you review some basic guidelines for approaching any chemistry problem and try out your skills on a few sample problems that demonstrate how you can use everyday reasoning in your chemistry class.

4: Quantitative Reasoning in Chemistry-Density

  • Building on the ideas explored in the first three lectures, you examine a fundamental quantitative measurement in chemistry, density, and explore the real-world meaning of this measurement. You then solidify your understanding of this concept by working some basic density problems.

5: The SI (Metric) System of Measurement

  • Next, you continue to lay a strong foundation for your understanding of chemistry by learning about one of the key tools you'll be using: the International System of Units (SI), or the metric system. This lecture explains why this system is so useful to scientists and lays out the prefixes and units of measurement that make up the metric system.

6: Converting between Systems of Measurement

  • Now that you have established an understanding of the SI system, put your knowledge to work as you practice converting units from one system of measurement to another. You hone your conversion skills by working several sample problems.

7: Elements, Atoms, and the Periodic Table

  • In the next three lectures, you cover some fundamental topics that you'll need before you can launch into your study of chemistry. You examine the basic building blocks of matter-elements and the atoms that constitute them-and you learn how to interpret the information about elements presented in the periodic table

8: Ions, Compounds, and Interpreting Formulas

  • Learn about protons, electrons, and neutrons; how ions are formed from atoms; how these ions can combine to form compounds; and how you can determine the formulas of these compounds. Some molecular substances are discussed and you are introduced to the final number associated with every element-its atomic weight.

9: Isotopes and Families of Elements

  • Discover how isotopes, which are different atoms of the same element, can actually differ in their weight because they contain different numbers of neutrons in their nuclei. Also, learn how different kinds of elements are grouped into both general categories (such as metals and nonmetals) as well as specific chemical "families," which then are arranged into the periodic table.

10: The Mole

  • One of the most important concepts to master in an introductory chemistry course is the concept of the mole, which provides chemists with a way to "count" atoms and molecules. Learn how scientists use the mole and explore the quantitative definition of this basic unit.

11: Solving Mole Problems

  • By solving problems involving moles, you refine the quantitative techniques introduced in earlier lectures while increasing your familiarity with this important chemical value.

12: Avogadro's Hypothesis and Molar Volume

  • After mastering the mole, you move on to a related concept: the "molar volume," or the amount of space occupied by one mole. You apply this understanding of molar volume as you examine Avogadro's Hypothesis, a principle concerning the molar volume of gases.

13: Percent Composition and Empirical Formulas

  • In this lecture, you encounter two "classic" types of chemistry problems and learn the basic characteristics of each. The lecture concludes with several practice problems to help you master the skill of solving percent composition problems.

14: Solving Empirical Formula Problems

  • Continue your consideration of "classic" chemistry problems with a look at empirical formulas, and examine how empirical formulas relate to molecular formulas

15: Writing and Balancing Chemical Equations

  • What happens when you combine two or more elements? Through a variety of practice problems, you learn to identify when a chemical reaction has occurred, how to write chemical equations, and how to "balance" equations to conserve the atoms.

16: An Introduction to Stoichiometry

  • What are the quantitative relationships between the substances in a chemical reaction? The study of stoichiometry shows you how to apply your ability to balance equations to solve problems involving chemical reactions.

17: Stoichiometry Problems

  • You extend your study of stoichiometry to consider more complex problems involving volume, molecules, and energy.

18: Advanced Stoichiometry

  • As you move on to more advanced stoichiometry problems, you see that they can be solved using a very simple approach. You encounter three terms often applied to chemical reactions: theoretical yields, actual yields, and percent yields.

19: An Introduction to Molarity

  • One important idea to master in any introductory chemistry course is the concept of concentration of a solution. Here, you explore this concept, the components that make up a solution, and learn about a basic unit of measurement for concentration, molarity.

20: Solving Molarity Problems

  • Extend your understanding of molarity by solving some typical problems encountered in the high school chemistry classroom. To foster your understanding of these problems, you are asked to draw upon the quantitative reasoning skills you previously used.

21: Advanced Molarity Problems

  • You are asked to take the concepts you learned about molarity in the last two lectures and apply them to a number of unfamiliar problems. These problems offer an opportunity to test your comprehension of the concepts you've been exploring.

22: Basic Concepts of Chemical Equilibrium

  • Continue your study of chemical reactions by examining an important new concept: the equilibrium system. You start by looking carefully at the difference between reactions that "go to completion" and those that are "reversible."

23: An Introduction to the Equilibrium Constant

  • By tracking and graphing a hypothetical reaction as it approaches a state of equilibrium, you gain a deeper understanding of the essential characteristics of equilibrium systems. Then, you're introduced to the single most important expression used to solve equilibrium problems: the equilibrium constant.

24: Interpreting an Equilibrium Constant

  • Your examination of the equilibrium constant continues. Learn exactly what the numerical value for an equilibrium constant tells and doesn't tell you about an equilibrium system.

25: Le Chatelier's Principle-Concentration

  • Before you can solve equilibrium problems, you need to understand what happens to an equilibrium system when conditions are changed. You learn about a fundamental idea-Le Chatelier's Principle-which lays the groundwork for a broader understanding of equilibrium.

26: Le Chatelier-Pressure and Temperature

  • Having established a basic understanding of Le Chatelier's Principle, you explore how this principle plays out in a variety of situations in which an equilibrium system is changed.

27: An Introduction to Equilibrium Problems

  • You use your basic understanding of equilibrium systems to try to solve some problems. You tackle two kinds of equilibrium problems: ones in which you are asked to calculate the equilibrium constant for an equation, and ones in which you are asked to find the equilibrium concentration of a reactant or product.

28: The Self-Ionization of Water

  • After examining how different substances may behave when dissolved in water, you learn about the self-ionization of water and use this knowledge to solve problems. The lecture ends with a brief introduction to the pH of solutions.

29: Strong Acids and Bases-General Properties

  • You return to the topic of pH and learn about how pH relates to two kinds of compounds: acids and bases. Through an introductory problem, you explore the relationship of various ions within these compounds.

30: Solving Strong Acid and Base Problems

  • You gain a deeper understanding of acids, bases, and pH by working several sample problems. These exercises help clarify the difference between strong and weak acids and bases and between the idea of a "strong" concentration versus a "strong" acid or base.

31: Weak Acids and Bases

  • Look at weak acids and bases, compounds that are only slightly ionized in water-based solutions. You learn how to solve the "classic" weak acid problem and apply the same approach to weak base problems.

32: Titrating Acids and Bases

  • Here, you explore "neutralization": the idea that if you add a base to an acid, it will tend to destroy the properties of the acid, and vice versa. You examine this reaction through demonstration of a laboratory procedure called titration.

33: Titration Curves and Indicators

  • Acid-base indicators, which change color when a solution switches from acid to base and back again, provide a striking demonstration of the transformation that occurs during titration. Learn how to use these indicators to determine the equivalence point of a titration, and examine what happens when you graph these reactions.

34: Solubility Equilibria-Principles, Problems

  • After learning about equilibrium systems, you move on to a particular type of system: "solubility equlibria," or the equilibria found in saturated solutions of slightly soluble ionic solids. You explore this concept as you practice solving a variety of related problems.

35: Solubility Equilibria-Common Ion Effect

  • Your study of solubility equilibria continues with some advanced practice problems. Here, you encounter the last major type of equilibrium problem. To solve these problems, you revisit Le Chatelier's Principle and learn about some of the pitfalls to avoid when dealing with these kinds of equilibrium systems.

36: Putting It All Together

  • In this final lecture, you tackle problems that require you to pull together all the knowledge you've acquired. Through these challenging problems, you build confidence in your ability to unravel new problems and pursue more advanced levels of chemistry.

Chemistry.2nd.Edition.part1.GC.rar

Chemistry.2nd.Edition.part2.GC.rar

Chemistry.2nd.Edition.part3.GC.rar


 TO MAC USERS: If RAR password doesn't work, use this archive program: 

RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


 TO WIN USERS: If RAR password doesn't work, use this archive program: 

Latest Winrar  and extract password protected files without error.


 Coktum   |  

Information
Members of Guests cannot leave comments.




rss