->
Lynda - Machine Learning and AI Foundations: Classification Modeling - 645050
Lynda - Machine Learning and AI Foundations: Classification Modeling
One type of problem absolutely dominates machine learning and artificial intelligence: classification. Binary classification, the predominant method, sorts data into one of two categories: purchase or not, fraud or not, ill or not, etc. Machine learning and AI-based solutions need accurate, well-chosen algorithms in order to perform classification correctly. This course explains why predictive analytics projects are ultimately classification problems, and how data scientists can choose the right strategy (or strategies) for their projects. Instructor Keith McCormick draws on techniques from both traditional statistics and modern machine learning, revealing their strengths and weaknesses. Keith explains how to define your classification strategy, making it clear that the right choice is often a combination of approaches. Then, he demonstrates 11 different algorithms for building out your model, from discriminant analysis to logistic regression to artificial neural networks. Finally, learn how to overcome challenges such as dealing with missing data and performing data reduction.


Table of Contents

  • Introduction
  • 1. The Big Picture: Defining Your Classification Strategy
  • 2. How Do I Choose a "Winner"?
  • 3. Algorithms on Parade
  • 4. Common Modeling Challenges
  • Conclusion
  • Lynda - Machine Learning and AI Foundations: Classification Modeling


     TO MAC USERS: If RAR password doesn't work, use this archive program: 

    RAR Expander 0.8.5 Beta 4  and extract password protected files without error.


     TO WIN USERS: If RAR password doesn't work, use this archive program: 

    Latest Winrar  and extract password protected files without error.


     Coktum   |  

    Information
    Members of Guests cannot leave comments.




    rss